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Abstract-The propagation of unloading shock waves in an elastic-plastic and strain hardening medium is studied
on the basis of the deformation theory of plasticity and the method ofcharacteristics. The load is applied suddenly
at the surface of the spherical cavity. The effect of hardening on the decay of the shock strength of principal
shearing strains, on the residual strains and the radial normal stresses is shown. A single parameter Gp/G is
defined for the quantitative specification of the plastic and linear strain hardening characteristics of the medium.

INTRODUCTION

THE problem of spherical wave propagation in elastic solids has been studied by many
researchers. Among the most recent investigators are P. C. Chou and H. A. Koening [1].
For inelastic spherical waves, H. G. Hopkins [2] has published an extensive survey in
which important contributions from the United States, Europe and Russia have been
reviewed. In particular, a solution by Hunter for an elastic plastic and linear hardening
material is explained in detail. Hunter's solution, however, is obtained by an inverse
method which is applicable for a particular and restrictive loading. Recently, M. G. Fried­
man, H. H. Bleich and R. Parnes [3], C. H. Mok [4] and S. K. Garg [5] have obtained
solutions for elastic-perfectly plastic shock waves by finite difference methods. S. Kaliski
and E. Wlodarczyk [po 470,6] investigated unloading waves in a rigid plastic and layered
medium. They also studied an elastic-plastic-linear hardening medium but introduced
a simplifying assumption ofelastic incompressibility [po 487, 6]. P. Perzyna and J. Bejda [7J
investigated a work-hardening and rate sensitive plastic medium which leads to two simple
linear formulations for the elastic and plastic range, respectively. The range ofapplicability
of the two formulations is governed by a plasticity criterion which is analogous to the
theory of elastic-viscous-plastic waves in bars by V. V. Sokolovsky [8]. In the formulation
of Ref. 7, the wave speed in the plastic range is assumed equal to that in the elastic range.
In a real material this is generally not the case and consequently the assumption may lead
to errors.

In this paper, the propagation of spherical unloading waves in an elastic-plastic, linear
hardening material is considered. The source of the waves is a uniform pressure applied
on the inner surface of a spherical cavity, Fig. 1. In particular, the effect of hardening
on the decay of the plastic shock strength and the residual plastic strain in the medium is
investigated in detail. The assumption of elastic incompressibility is not required. The
formulation is developed on the basis of the deformation theoryt established by A. A.
Illyushin [9] and applied by Y. L. Luntz [10]. Luntz, however, did not investigate the strain
hardening effect, which is the primary interest of the present work.

t The theory is shown by IIIyushin to be applicable to a medium undergoing simple loading or unloading
where the ratio between all the applied external forces remains constant with time. This condition is clearly
satisfied in the present problem.
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FIG. I. Spherical cavity and loading.

FORMULATION AND ANALYSIS

It is assumed that the elastic-plastic and hardening property of the medium follows
the relation,

a F(e) (1)

where a and e are the generalized stress and strain respectively. The generalized stress and
strain are defined in terms of the principal stresses at, a2, a3 and strains, el ,e2, e3 by the
equations:

1 / 2 2 Za = .j6Y [(a 1-az) +(az -(3) +(a3 -al) ]

e = .j(j).j[(e,-ez)z+(eZ-e3)z+(e3-el)Z].

(2)

(3)

The function F(s) is defined separately for the case of loading and unloading. Since a
and e are always positive, the stress-strain relation is completely defined in the first quad­
rant, Fig. 2.

(0) Loading (b) Unloading

.. "
FIG. 2. Generalized stress-strain relation.
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Loading

(oe/ot > 0, Fig. 2a)

(4)

where G and Gp are shear moduli in the elastic and plastic range, respectively, and eo
is the generalization strain at yield. When Gp = G, equation (4) reduces to the elastic
relation (J = Ge and when Gp = 0 it reduces to the perfectly plastic relation where the
stress is a constant, Geo. The generalized stress (J 0 at yield is

(5)

The value of (Jo can be obtained from a uniaxial tension test since in that particular case,
(J2 = (J3 = 0 and

(6)

where (J}. is the uniaxial tensile stress at yieldt.

Unloading

(oe/ot < 0, Fig. 2b)

(J = Ge+(Gp-G)(em-eo), (7)

where em is the maximum generalized strain. When Gp = 0 equation (7) reduces to the
perfectly plastic case with no hardening,

For many real materials, especially metals, one can restrict considerations to values of G
such that 0 < Gp < G.

Spherical unloading (Fig. 3)
(J = ((J,-(J,)/..)3, e = 2(e,-e,)/..)3.

Let the principal shearing strains e, eo and em be defined as

(8)

where the subscripts °and m denote yield strain and maximum strain, respectivelyt.
Equation (7) for unloading becomes

(9)

Note that equations (7) and (9) assume elastic unloading from a plastic state as indicated
by the inequalities for e and e.
At the yield limit, from equation (3),

GO = 2(e,-G,)0/..)3.

t According to Mises' theory [11], u y equals -/(3)k, where k is the yield limit in simple shear, so that Uo = k.
According to Tresca u y = 2k so that Uo = 2k/-/3 [11].

t See Ref. 11, p. 17.
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FIG. 3. Stress-strain relation of unloading in spherical symmetric case.

From the above equation and equations (8) and (5) it follows that at the yield limit,

eo = (£t-£,)O = .j(3)£0/2 = .j(3)ao/2G. (10)

In addition to the stress-strain relation, equation (9), applicable in the plastic range for
spherical unloading, the combined condition of plastic incompressibility and volumetric
law of elastic deformation is assumed, that is

(II)

(12)

The equation of motion is
02U O(J, ((J,-(Jt)

p ot2 = ~+2 r

where K is the bulk modulus, p density, u radial displacement, r radial coordinate and
t time.

Dynamic formulation

Equations (9), (11) and (12) constitute a complete system for the elastic-plastic un­
loading waves. It is convenient for the solution of boundary value problems to combine
the three equations into one for the displacement, u. Substitution of(£t - c,) for () in equa­
tion (9) and then u/r for Ct and ou/or for c, in equation (9) and equation (11) yields two
equations in (Jt, (JT and u. From these two equations expressions for (Jt, (JT and o(J,/or in
terms of u can be obtained. Substitution of these expressions into equation (12) yields

a
2
u+~ au 2~ = !.- a

2
u+h[dOm+3(Om- Oo)] (13a)

ar2 r ar r2 c2 at2 dr r
where

h = (d c2)fc2

c = .j[(4G+3K)/3p] = elastic speed wave

cp = .j[(4Gp +3K)/3p] = plastic wave speedt.

(13b)

(l3c)

(l3d)

t This can be obtained from the dynamic formulation for loading in which equation (7) is replaced by equa­
tion (4).
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Let

r = ctlro and r = rlro

(14)

where ro is the radius of the cavity.
Then

a2 ii ~ aii-l = a2 ii h[dOm 3(Om -1)J
:1-2 + -:1- -2 :1 2 + d- + - .ur r ur r ur r r

This is the dynamic equation for the elastic-plastic unloading waves with linear hardening.
When cp = c, h 0, equation (14) reduces to the familiar equation for elastic spherical
waves.

Characteristics and wave fronts

The only type of loading considered here is a pressure applied uniformly on the cavity
surface. The applied pressure has a finite jump at r = 0 and decreases monotonically
in time, Fig. 1. For this loading the wave fronts in the Lagrangian plane can be determined
a priori on the basis of the theory of characteristics, as follows:

The various wave fronts can be explained most clearly when the problem ofa continuous
pressure, Fig. 4(a), is considered first. The jump in pressure at r = 0 then can be obtained by
a limiting procedure, Fig. 4(b). In Fig. 4(a), a continuous pressure vs. time diagram is
plotted on the left side of the r-r plane. At r = 0 a leading elastic wave is propagated
into the medium with speed c. The locus of this wave is the characteristic line ab defined
by the equation, r- 1 = r. After a certain time when the pressure increases to such a
magnitude as to initiate yielding, a plastic wave will propagate with speed Cpo Plastic

a

(a) Continuous pIT)

T

m

peT) a,c,tI
(b) Discontinuous peT)

FIG. 4. Wave fronts in r-r plane.
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waves will propagate from the cavity from the time of initial yielding, say at the point c
in Fig. 4(a), through the time of initial unloading at the point e. The curve cd and the point d
which define the elastic-plastic interface and the extent of plastic deformation can not be
determined a priori. The characteristic line ed with slope cp/c is the locus of the plastic
wave prior to tu lloading. The lines parallel to ed represent plastic waves with gradually
varying depths of propagation. Therefore, the region abcdh bounded by the leading elastic
wave front ab, the time interval ac, the elastic-plastic interface cd and the elastic charac­
teristic dh, is the first elastic region. The region cde bounded by the elastic-plastic interface
cd, the time interval ce and the plastic wave ed is the plastic region. The region egd bounded
by the elastic characteristic dg, the time interval eg and the plastic wave ed is the second
clastic region. The region above the characteristics dg and dh is the third elastic region
and is not of primary interest because of the long time after the peak load.

The wave fronts for the problem with pressure jump at r = 0, Fig. 4(b), can now be
determined. This is accomplished by decreasing the time interval ae in Fig. 4(a) to zero,
so that the plastic region cde is reduced to a limiting line ad. The line ad is therefore both
the plastic wave front and the elastic-plastic interface. The r-r plane is divided into four
regions, the undisturbed region abr ahead of the leading elastic front and the three elastic
regions abdh, agd and the region above lines dg and dh. The plastic wave front ad is deter­
mined a priori as a characteristic with slope cp/c. The point d representing the depth of
plastic deformation, however, is not known and must be determined along with the other
unknowns of a problem.

Boundary conditions

Along the leading elastic front ab, Fig. 4(b), u= O. Along the plastic wave front ad,
u g(r) which is the displacement u(r, r) evaluated along ad. The function g(r) is known,
once the solution in the first elastic region is obtained. The principal shearing strain {} = 1
at the instant the plastic wave arrives at a position along ad, and jumps to 8m ::::: 1 imme­
diately before unloading. At the cavity surface ii, = p(r) and along r = 0, U= u, = O.
Both ii, and pare non-dimensionalized by the quantity pc2()o. All the boundary conditions
are shown in Fig. 5.

Ib"

'-----L------------__l
'i =I (Cavity)

FIG. 5. Boundary conditions.
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Solution in region I

In the first elastic region ahead of the plastic wave the governing equation is

(15)

A closed form solution satisfying the boundary conditions shown in Fig. 5 was obtained
by Luntz [po 65, 10J as follows;

1 {A[ ( 3/l-V
2
_/l

2
• )Ju(r,T) = (.1-1)(62-3) f _3~2+~1l-1 cos(vln~)+ v sm(vln~)

(16)

where

~ = A(r - T - I) + 1,

.1+3
/l=U'

-J[12-(A+3)2J
V = --'---2-.1---.

The displacement along the plastic wave front ad, Fig. 4(b), defined by r = 1+ (CpTjC), may
be obtained from equation (16) as,

u(r) = g(r) = (A-l)~6A.-3) {(-3A.+l)r+rr
2

[
3A2 +4A-3 ]}

x (32-l)cos(vlnr)+ 2AV sin(vlnr) . (17)

Solution in region II

The governing equation equation (14) derived earlier is assembled here with the
boundary conditions obtained from the continuity of displacements and equations (9)
and (11).

Let

u(r, T) = u(r) = g(r), along r = 1+CpT/C

u(r, T) = U(r, T) + v(r)

along r = 1.

(18)

(19)

(20)

(21)
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where v(r) satisfies the following inhomogeneous ordinary differential equation and the
two boundary conditions:

d
2
v ~ dv _ 2v = h(dl1m 3(l1m 1))

d-2 + - d- -2 d- + -r r r r r r

dv v -
dr f = h(Bm -l), at r = 1+cpr/c

(22)

(23t)

v = 0, at r = 1. (24)

Substituting ii(r, r) into equations (18), (19) and (20) and making use of the equations (22),
(23) and (24) yields the governing equations for V(r, r),

iPV 20V 2V 02V
or2 +f or or2 (25)

_oV+cp _oV__ "_V = f(i')t
or C r

along r = 1+cpT:/c (26)

OV (3K )-_+ --1 V = p(r),or pc2 along r = 1 (27)

where
f(r) = h{1 +arl'-3[cos(vln r)+b sin(v In r)]}

a _.1._ b=2A
2

+A 1
1-2.1.' 2Av(2A-l)'

(28)

(30)

(29)

dr = -dr,

dr = dr,

The problem now is to construct solutions for V(r, r). This is accomplished by the method
of characteristics. The characteristic lines and the corresponding compatibility equations
are given as follows (see equation 10 [12]):

(V- V)dV = dV-+2 ....!._- dr
, r r r2

(V- V)dV = -dV-+2 ....!._- dr
, r r r2

where the subscripts rand r denote partial derivatives. On the basis of these ordinary
differential equations (29) and (30), the boundary conditions equations (26) and (27) and
the equation, dV = Vi dr+ V, dr, solutions for the functions V, Viand V, can be obtained
by a usual numerical procedure. Some explanation will be given in the next section.

Once the function V(r, r) is constructed, the function v(r) can be computed from equa­
tion (21) written along the plastic wave front, i.e.

v(r) = g(r) - V(r, r), along r = 1+ cpr/c,

where g(r) is the known solution for displacements in equation (19). The construction of
the solution for ii(r, r) is now complete.

t First of equations (23) applies everywhere in the region. This may be verified upon differentiation and then
subtraction from equation (22).

t Some details in the derivation of this equation are given in Appendix A.
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NUMERICAL PROBLEMS

A set of numerical problems is used to study the effect of strain hardening on the
propagation of plastic shock waves, the residual strains and the radial normal stresses
in the medium. The applied load has a jump at r = 0 and decreases linearly with time,
Fig. 1. The elastic Poisson's ratio u ' is selected to be t, so that

4G _ 2(1-2u') _ .8
3K - 1+u' - 0 ,

and

Gp 4Gp/3K
G 0·8

Also from equations (13)

:p = J(:~p:33~) = JL+(41~:/3K)l
The only independent parameter therefore is the strain-hardening parameter Gp/G. For
convenience a list of problems with given data is shown in Table 1.

TABLE 1. DATA USED IN PROBLEMS (POISSON'S RATIO (]' = 0'25)

Prob. Loadt Hardening Ratio of Network size
no. parameter wave speeds Fig. 6

Po a GJG c/cp M I d'i M=dr

\ -\·2 2·4 0 \·342 0'020 0·0268 0·0234
2 -\·2 2·4 0·\00 \·29\ 0·020 0·0258 0·0229
3 -\·2 2-4 0·\87 \·251 0·020 0·0250 0·0225
4 -\·2 2-4 0·262 \'220 0·020 0·0244 0·0222
5 -\·2 2·4 0·313 \·200 0·020 0·0240 0·0220

t For results shown in Figs. 9-\2 the Po values are changed as indicated.

The computation is a simple numerical integration technique applied along charac­
teristics for the functions V, Vi' and VT • Referring to Fig. 6 for the characteristic network
it is clear that once the net size ~;\ is selected the complete net is defined by the plastic
front with slope cp/c and the 45° lines. The computational procedure starts from the
solution of the initial three points, Fig. 6 points (1,0), (1 +MI , Md and (1,2Lh) using
formulas given in Appendix B. The rest of the node points are then treated systematically
with the help of a set of new coordinate axes at 45° with the original (Y, or) set. These node
points are classified into four types; points on the plastic front, points next to the front,
points on the cavity surface and interior regular points. On the plastic front solutions
for the three unknowns V, Vi' and VT are determined from the boundary condition equa­
tion (26), a condition equation (29) along a backward-drawn characteristic, and the
differential condition dV = Vi' dr+ VT dr. This differential condition, of course, applies
to all four types of points so only two additional conditions are required. On the cavity
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FIG. 6. Characteristic network.

surface these are the boundary conditions of equation (27) and a condition in equation (30)
along a backward-drawn characteristic. For interior regular points located on top of a
right diamond-shaped net, the two characteristic conditions equations (29) and (30) apply.
Due to the irregular geometry of nets near the plastic front, Fig. 6, a backward-drawn
characteristic at the front always intersects another characteristic at a point which is not
a node and therefore unknowns at this intersection must be obtained by interpolation.
Furthermore, points next to the front have a backward-drawn characteristic of a different
length. The length is determined by the slope of the plastic front. Actual computations
were programmed in FORTRAN language and carried out on an IBM 7094 computer.

The most important result is the maximum principal shearing strain e", along the plastic
shock front. The quantity can be computed as follows once the functions V, Vi' are ob­
tained. From equations (8), (21) and (23),

_ u au (V ) (V dV) (V) -o = --- = --V- + --- = --V- +h(I-0 )'" r Or r r r dr r r '"

(32)
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The residual principal shearing strain e. can be obtained by letting (a t - a.)/2 = 0 in equa­
tion (9) and dividing all terms by eo. Thus,

(33)

The radial normal stress ii. can be computed from equation (20) with ii replaced by ii/f
and p(t) by a•. Since 80 = ay/2G and c2 = (4G+3K)/3p it follows that for Poisson's
ratio a' = -.!,

(34)
_ a. 2 a.
a. = -2- =--

pc 80 3 ay

where ayis the uniaxial tensile stress at yield. Thus, the nondimensional radial normal stress
ii. (and the applied load p which is ii, at f = I) may take either of the two ratios.

DISCUSSION OF RESULTS

The most important results of this investigation are presented in Figs. 7-12. Figure 7
is a plot of the maximum principal shearing strain, Om at the plastic wave front vs. the
wave front position, f. The strain 0 at this front has a jump from the yield limit of unity
to the maximum Om' From Fig. 7, it can be seen that the strength bOm = {}m -1 of the
jump or shock decays almost linearly as it is propagated into the medium with the plastic
wave speed cpo Three curves are shown in Fig. 7. The upper one in the figure corresponds
to an ideal plastic medium with no strain hardening effect, GJG = O. The lower one
corresponds to a medium with strong hardening effect, Gp/G = 0·313. Consequently, it
can be seen that the effect of hardening on the decay of the shock strength b{}m at the
cavity surface is approximately from 0·36 to 0·29. The extent of the plastic region f is
from 1·18 to about 1-19.
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FIG. 7. Maximum principal shearing strain. Prob. 1,3,5.
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Figure 8 is a plot of the residual principal shearing strain (}r vs. the radial distance r.
The effect of strain hardening on the magnitude of the residual strain er is quite significant,
from 0·36 in the ideal plastic medium to 0·20 at the cavity surface in a medium with a strong
hardening effect. The results in Figs. 7 and 8 are all for a linearly decreasing pressure,
Fig. 1, with Po = -1,2 and a = 2·4.

For unloading situations with higher magnitudes of Po, the maximum principal
shearing strain em at the cavity surface is plotted against the parameter of strain hardening
in Fig. 9. The residual principal shearing strain er is plotted in Fig. 10.

Figures 11 and 12 show the spatial distribution of the radial normal stress iir at two
different times for the ideal elastic-plastic medium, Gp/G = 0, and for a strong hardening
medium, Gp/G = 0'313, respectively. The effect of hardening on the magnitudes of iir
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is not significant. The radial distance between the leading elastic front and the plastic
front is considerably shortened in the hardening case as expected on theoretical grounds.
It is interesting to note the recent work by C. H. Mok [Fig. 2(a),4] on a finite difference
solution for an ideal elastic-plastic medium under a constant pressure. The numerical
solution for the spatial distribution of radial normal stress ar appears to be satisfactory
in several comparison studies made by the author. However, as pointed out in that paper
[po 375, 4], the existence of a discontinuity at the elastic-plastic boundary is not clear.
Such a discontinuity is shown very definitely in Figs. 11 and 12 here. The spatial variation
of ar behind the plastic front as shown here is quite different from those shown by Mok
[Fig. 2(a), 4] primarily due to the difference of load applied. This statement is supported
by a comparison of the work by M. G. Friedman, H. H. Bleich and R. Parnes [Fig. 7, 3]
where the applied load at the cavity surface decreases exponentially with time. Furthermore,
another recent work for an ideal elastic-plastic medium by S. K. Garg [Fig. 1, 5] also
shows similar behavior for ar for a load with initial constant and later decreasing magni­
tudes. This initial constant load introduces a plastic region for ar which separates the
unloading region from the elastic-precursor [Fig. 1, 5]. For other main features of ar in­
cluding the discontinuities at the elastic and plastic fronts and the spherical divergence of
the progressing waves, results obtained here for the ideal elastic-plastic medium agree
in general with those of References [3] and [5].

CONCLUSIONS

The strain hardening property for an elastic-plastic medium can be defined by a para­
meter Gp/G. For a wide range of this parameter and for the unloading wave studied, the
following conclusions can be made.

1. The maximum principal shearing strain 8m and the shock MJm at the plastic wave
front decrease somewhat with increasing strain hardening.

2. The extent of plastic region increases slightly with increasing strain hardening.
3. The residual principal shearing strain Or decreases significantly with increasing

strain hardening.
4. The distance between the elastic and plastic fronts of the radial normal stresses

decreases with increasing hardening but the effect on the magnitudes of the stresses
is not significant.
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APPENDIX

A. Derivation ofequation (26)
Along the plastic wave front, r = 1+cpr/c, the following conditions hold. From equa­

tion (19) and (21),
u = u +v = g(r)

u = g(r)-v

u _au = (~_au)_(~_ dV).
r ar f af r dr

From equation (23)

Taking the differential du along the wave front where dr/dr = c/cp yields

au au au au dv
du = -dr+-dr = -dr+-dr+-dr

ar ar af ar dr

But u= g(r)

au c au dv d
-+--+- = -g(r).
ar cp ar df dr

Eliminating v and dv/dr from (At), (A2) and (A3) yields

au Cp au u { c~ [d - --J}-_+------::-=h 1+-- -g(r)-g(r)/r .
ar c ar r c~ - c2 dr

(AI)

(A2)

(A3)

(A4)

Differentiating g(r) in equation (17) with r, then subtracting g(r)/r from it and substituting
the result into equation (A4) yields

au Cp au u _
-_+- -----::- = f(r).ar c ar r
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B. Initial three points

The first point (1,0):

C. Y. YANG

v = 0,
C

V t = -[f(l)-PoJ
cp

Vft = a+ (1-;~) V t •

Taking the derivative of equation (26) along the wave front direction, say s, yields,

dVr cp dVt d V df-+- -- =-
ds C ds ds r ds

(B1)

Combining equation (25) with (B1) yields,

[ , C (C cp ) ]Vrr = f (1)- Vr+- Vt - -+- Vrt /2
cp cp C

The functions V, Vr and V t at the second point (1 +M1 , ~"1) and the third point
(1, 2~,) can be computed by a Taylor's series approximation as follows

_ (r-1)2 _ ..2
V = (Vrh(r-1)+(V,h'r+(Vrr)I-2

-(Vfth'r(r 1)+(VTt)1 2
Vr = (Vr)1 +(Vrr)l(r-1)+(Vr,h..

Vt = (V,h +(Vr,h(r-1)+(Vtt)I'"

(Received 24 June 1968; revised 21 July 1969)

A6cTJlIlKT-Ha OCHOse )J,e$opMaUHoHHoil: TeOpltH rmaCTH'IHOCTH H MeTOlla xapaKTepHCTHK, HCCJle.1lyeTcli

pacnpOCTpaHeHHe y)J,apHblX BOJIH B ynpyro-rmaCTlI'lecKoil: cpe)J,e C ynpO'lHeHHeM. HarpY3Ka npHJlOlKeHa

BHe3anHO Ha nosepxHOCTH C$ePH'lecKOil: rrOJlOCTH. YKa3blBaeTCli BJlHIIHHe J$qJeKTa yrrpO'lHeHHII Ha
3aTyxaHHe CHJlbl y,!\apa maBHbIX )J,e$opMaUHiI: C,!\BHra, a TaKlKe Ha pe3H,lIyaJIbHble ,!\e$opMaUHH }\

pa)J,HaJIbHble HOpMaJlbHbie HanplilKeHHlI. Onpe)J,emleTcli O)J,HHapHblil: rrapaMeTp GrlG ,ll,Jl1I Ka'lecTseHHoil:

cIIeUH$HKail:HH xapaKTepHCTHK rmaCTH'leCKOrO H JlHHeil:Horo yrrpO'lHeHHlI cpe)J,b1.


